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Hapke's [1,2] comprehensive work on the solution of
the radiative transfer problem for a particulate medium has
been applied in a number of studies [3,4,5] to derive first-
order analytic expressions relating reflectance, albedo,
and single-scattering albedo for the extraction of
abundance of materials from remotely sensed data.  Linear
spectral mixture analysis (SMA) [3 through 12] has been
widely used in the analysis of laboratory [3,4,5,6] and
field data[7,8] (terrestrial and extraterrestrial
spectroscopic, multispectral, and hyperspectral) with
great success.  Although it is widely acknowledged that
radiative transfer  solutions provide more accurate
abundance estimates for intimate mixtures, linear SMA is
primarily used in imaging applications. Differences
(>10%) in physical abundance estimates between  linear
and nonlinear solutions is lager than either the instrument
measurement errors  (1-2 DN for 8-bit encoding)  or the
accuracy (<10%) of the radiative transfer theory[2]. This
discrepancy is largely due to the fact mixing is largely
nonlinear at the scale of observation, and there is only a
limited number of end-members the mixing equation can
accommodate at  a time.

In this analysis, we apply nonlinear mixture analysis
to hyperspectral data and focus on 3 key issues: spectral
end-member characterization, subpixel component
abundance quantification, and  error magnitude and
distribution for band residuals and total RMS errors. The
hyperspectral data was collected by HYperspectral Digital
Imagery Collection Experiment (HYDICE) instrument.
Nonlinear analysis provides a different view over a pure
linear approach  with respect  to each of the three major
factors.

HYDICE is a pushbroom system patterned into a 210
(channel) by 320 (pixel) array of detector elements  with
dynamic range of 12 bits. It has an IFOV of
0.5milliradian.  Data collected at a altitude of 2,000m (1m
GSD) and 6,000m(3m GSD) over a semi-arid region of
Arizona were calibrated to reflectance using a series of
calibration panels in the scene.  The reflectance data for
both 1 and 3 meter resolutions were transformed  to SSA
using the algorithms of [3].

Spectral   End-member  Character iza t ion : The
criteria for end-member selection are to balance the
minimization of RMS error, to derive physically
meaningful end-member spectra (representative of
physically realistic materials) and to produce a well
bounded end-member fraction map. Two different methods
are used to study the difference between the linear and
nonlinear approaches.  One is to use 3 end-members to
simulated a “minimum” end-members solution.  The other
uses 6 for the “maximum” situation.  We find
fundamentally different sets of end-members for the
reflectance vs. SSA data sets in order to reach the optimum
solution (Figures 1a and b).  This is especially true when
the number of end-members input into SMA is more than

three and one less than the maximum.  In this case, one
needs to have more end members in the higher albedo
range than in the lower albedo range for the linear
approach, while more low albedo relative to high albedo
end-member are required for the nonlinear situation. The
differences  between the linear and nonlinear data sets are
coupled to the SSA transform.  This transform reduces
spectral contrast in higher albedo materials and increases
spectral contrast in lower albedo material (relative to
reflectance).  Spectral contrast here refers not only to
absorption band strength in a single material, but also to
the contrast between materials and overall continuum.  As
a consequence, a different set of end-members is required to
optimize the mixing solution for the SSA data relative to
the reflectance data.

Subp ixe l  Abundance  Quan t i f i ca t i on :  Linear
SMA gives an adequate representation  of the spatial
relationship and physical abundance of the components if
the mixing systematics are linear.  However,  in many
planetary situations, intimate mixing is the norm and
nonlinear mixing should be employed for more accurate
abundance determination.  For the desert soils in this
region of Arizona,  we expect the end-members to be
intimately mixed at the 1-3 meter scale.  To evaluate the
difference between the linear and nonlinear mixing on
hyperspectral data, we present the results of the 3-
component mixing in Figure 2.  The absolute differences
in abundance can be as much as 30%. Detailed analysis of
this data cloud for each individual component (Figure 3)
reveals two distinctively different relationships, one
being linear, and the other curve-linear.  Each of the trends
maps out the spatial relationship of the scene for the
given end-member.  The other major difference between
these two different approaches  is described by the amount
of super positive and negative points in the scene.  The
nonlinear model  is often much better constrained and has
less super positive and negative data numbers.  Along with
the lab studies [3,4], we believe the nonlinear  model is a
better model to use in light of the Hapke’s  photometric
radiative transfer theory provided the data are calibrated to
reflectance, and the assumptions in SSA transform are met
[2,3,4].

 Error Magnitude and D i s t r i b u t i o n :  The
average RMS error for the nonlinear SMA is generally  one
half the average RMS of the linear SMA solution,
regardless  the number of end-members used in the
analysis.  In addition, the average RMS error (less than
1%) for the nonlinear model is comparable with the
instrumental error. Therefore, the selection of image end-
members must be done carefully to avoid end-members that
model the instrumental error.  Spatially, the error map
from nonlinear SMA shows a more random pattern than
from the linear SMA. Exhaustive study of multiple image
end-member combinations suggests that the end-member
set from the least RMS error solution may produce
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fractions that are not well connected to physical
abundance.  Equally important is that end-member selected
from spectral libraries (Lab or field based) may not be
comparable to the reflectance of image end-member in
hyperspectral data set.  Thus we believe that the best
approach is to model the image data using image end-
member, and that the image end-member be modeled with
lab or field data subsequently.

C o n c l u s i o n s :  Nonlinear model  clearly provides
advantage to the understanding of end-members and  their
application to SMA. It also enhances our ability to extract
more realistic end-member fractions.  RMS error from
nonlinear  model is approaching the instrument error.
This is especially true for the well modeled  background
which is the majority of the scene.
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Figure 1a: Linear end-member selected from a 3-
meter image scene.  More higher albedo end-member can
be accommodated in the SMA analysis.
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Figure 1b: Nonlinear end-member selected from the same
scene with SSA transformation.  More low albedo end-
member can be accommodated in the SMA analysis.

Figure 2: Scatter plots of linear vs., Nonlinear SMA
analysis from 3 end-member shows different approach
produces very different fraction results.

Figure 3: The expanded view of bright soil fraction from
Figure 2 clearly shows both the linear and curve-linear
partition of the fraction data cloud.
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